MEASURE THEORETICAL ENTROPY OF COVERS

BY

Uri Shapira

Institute of Mathematics, The Hebrew University of Jerusalem Givat Ram, Jerusalem 91904, Israel e-mail: ushapira@math.huji.ac.il

ABSTRACT

In this paper we introduce three notions of measure theoretical entropy of a measurable cover \mathcal{U} in a measure theoretical dynamical system. Two of them were already introduced in [R] and the new one is defined only in the ergodic case. We then prove that these three notions coincide, thus answering a question posed in [R], and recover a variational inequality (proved in [GW]) and a proof of the classical variational principle based on a comparison between the entropies of covers and partitions.

1. Introduction

In this paper a measure theoretical dynamical system (m.t.d.s) is a four tuple (X, \mathcal{B}, μ, T) , where (X, \mathcal{B}) is a standard space (i.e., isomorphic to [0, 1] with the Borel σ -algebra, μ is a probability measure on (X, \mathcal{B}) and T is an invertible measure preserving map from X to itself.

A topological dynamical system (t.d.s) is a pair (X,T), where X is a compact metric space and T is a homeomorphism from X to itself.

In [R] the author introduced two notions of measure theoretical entropy of a cover, both generalizing the definition of measure theoretical entropy of a partition and influenced by [BGH], namely,

- 1. $h_{\mu}^{+}(\mathcal{U}) = \inf_{\alpha \succeq \mathcal{U}} h_{\mu}(\alpha),$
- 2. $h_{\mu}(\mathcal{U}) = \lim_{n \to \infty} \frac{1}{n} \inf_{\alpha \succeq \mathcal{U}_0^{n-1}} H_{\mu}(\alpha)$.

It was shown there among other things that $h_{\mu}^{-}(\mathcal{U}) \leq h_{\mu}^{+}(\mathcal{U})$ and that in the topological case (i.e., a t.d.s and an open cover), one can always find an invariant measure μ such that $h_{\mu}^{-}(\mathcal{U}) = h_{top}(\mathcal{U})$. This generalizes the result from [BGH]

asserting that in the topological case one can always find an invariant measure μ such that $h_{\mu}^{+}(\mathcal{U}) \geq h_{top}(\mathcal{U})$.

The question whether $h_{\mu}^{-}(\mathcal{U}) = h_{\mu}^{+}(\mathcal{U})$ arose. In [HMRY] the authors continued the research on these concepts and proved, among other results, with the aid of the Jewett–Krieger theorem, that if there exists a t.d.s, an invariant measure μ and an open cover \mathcal{U} such that $h_{\mu}^{-}(\mathcal{U}) < h_{\mu}^{+}(\mathcal{U})$, then one can find such a situation in a uniquely ergodic t.d.s.

Recently, B. Weiss and E. Glasner [GW] showed that if (X,T) is a t.d.s and \mathcal{U} is any cover, then for any invariant measure μ , $h_{\mu}^{+}(\mathcal{U}) \leq h_{top}(\mathcal{U})$, and so combining these results one concludes that for a t.d.s and an open cover we have that $h_{\mu}^{-}(\mathcal{U}) = h_{\mu}^{+}(\mathcal{U})$.

The measure theoretical entropy of a partition α in an ergodic m.t.d.s can be defined as $\lim \frac{1}{n} \log \mathcal{N}(\alpha_0^{n-1}, \epsilon)$, where $0 < \epsilon < 1$ and $\mathcal{N}(\alpha_0^{n-1}, \epsilon)$ is the minimum number of atoms of α_0^{n-1} needed to cover X up to a set of measure less than ϵ . (See [Ru].)

In this paper we follow this line and in Section 4 define a notion of measure theoretical entropy for a cover \mathcal{U} of an ergodic m.t.d.s as $h_{\mu}^{e}(\mathcal{U}) = \lim \frac{1}{n} \log \mathcal{N}(\mathcal{U}_{0}^{n-1}, \epsilon)$ (where $0 < \epsilon < 1$). We prove (Theorem 4.2) the existence of the limit and its independence of ϵ , in a different way from [Ru] using Strong Rohlin Towers. This can serve as an alternative proof of the fact that the above definition of measure theoretical entropy of a partition in an ergodic m.t.d.s is well defined.

We show in a direct way that in the ergodic case the three notions: $h_{\mu}^{-}(\mathcal{U})$, $h_{\mu}^{+}(\mathcal{U})$, $h_{\mu}^{e}(\mathcal{U})$ coincide (Theorems 4.4, 4.5), and from the ergodic decomposition for $h_{\mu}^{-}(\mathcal{U})$, $h_{\mu}^{+}(\mathcal{U})$, proved in [HMRY], we deduce that $h_{\mu}^{-}(\mathcal{U}) = h_{\mu}^{+}(\mathcal{U})$ in the general case (Corollary 5.2), and so we can denote this number by $h_{\mu}(\mathcal{U}, T)$ or $h_{\mu}(\mathcal{U})$.

We also get an immediate proof of a slight generalization of the inequality $h_{\mu}(\mathcal{U}) \leq h_{top}(\mathcal{U})$, mentioned earlier, from [GW], to the non-topological case (Theorem 6.1).

ACKNOWLEDGEMENTS: This paper was written as an M.Sc. thesis at The Hebrew University of Jerusalem under the supervision of Prof. Benjamin Weiss. I would like to thank Prof. Weiss for introducing me to the subject, and sharing with me his and Prof. Eli Glasner's valuable ideas.

2. Preliminaries

Recall that in the following a measure theoretical dynamical system (m.t.d.s) is a four tuple (X, \mathcal{B}, μ, T) , where (X, \mathcal{B}) is a standard space, μ is a probability measure on (X, \mathcal{B}) and T is an invertible measure preserving transformation of X.

2.1 Definition:

- A cover of X is a finite collection of measurable sets that cover X.
- The collection of covers of X will be denoted by \mathcal{C}_X .
- A partition of X is a cover of X whose elements are mutually disjoint.
- The collection of partitions of X will be denoted by \mathcal{P}_X . Usually we denote covers by \mathcal{U}, \mathcal{V} and partitions by α, β, γ etc.
- We say that a cover \mathcal{U} is finer than \mathcal{V} ($\mathcal{U} \succeq \mathcal{V}$) if any element of \mathcal{U} is contained in an element of \mathcal{V} .
- For any $\mathcal{U} \in \mathcal{C}_X$ and $k \in \mathbb{Z}$ we denote by $T^k(\mathcal{U})$ the cover whose elements are the sets of the form $T^k(\mathcal{U})$ where $\mathcal{U} \in \mathcal{U}$.
- We define the join, $\mathcal{U} \vee \mathcal{V}$, of two covers \mathcal{U}, \mathcal{V} to be the cover whose elements are sets of the form $U \cap V$ where $U \in \mathcal{U}$ and $V \in \mathcal{V}$.
- When the transformation T is understood we denote, for l > k, the cover $T^{-k}(\mathcal{U}) \vee T^{-(k+1)}(\mathcal{U}) \vee \cdots \vee T^{-l}(\mathcal{U})$ by \mathcal{U}_k^l .
- 2.2 Definition: For $0 < \delta < 1$ define $H(\delta) = -\delta \log \delta (1 \delta) \log(1 \delta)$.

Note that $\lim_{\delta \to 0} H(\delta) = 0$.

In the sequel, we will prove some combinatorial lemmas and often we will encounter the expression $\sum_{j \leq \delta K} {K \choose j}$. We shall make use of the next elementary lemma:

- 1.1 Lemma 1.5.4 in [Sh1]): If $\delta < \frac{1}{2}$ then $\sum_{j \leq \delta K} {K \choose j} \leq 2^{H(\delta)}$.
- 2.4 Definition: A m.t.d.s (X, \mathcal{B}, μ, T) is said to be aperiodic if, for every $n \in \mathbb{N}$, $\mu(\{x|T^nx=x\})=0$.

An ergodic system which is not aperiodic is easily seen to be a cyclic permutation on a finite number of atoms.

One of our main tools in practice will be the Strong Rohlin Lemma ([Sh2] p. 15):

2.5 Lemma: Let (X, \mathcal{B}, μ, T) be an ergodic, aperiodic system and let $\alpha \in \mathcal{P}_X$. Then for any $\delta > 0$ and $n \in \mathbb{N}$, one can find a set $B \in \mathcal{B}$ such that

 $B, TB, \ldots, T^{n-1}B$ are mutually disjoint, $\mu(\bigcup_{0}^{n-1} T^{i}B) > 1 - \delta$ and the distribution of α is the same as the distribution of the partition $\alpha|_{B}$ that α induces on B.

The data (n, δ, B, α) will be called a strong Rohlin tower of height n and error δ with respect to α and with B as a base.

3. Measure theoretical entropy for covers

Let (X, \mathcal{B}, μ, T) be a m.t.d.s. The definitions and proofs in this section were introduced in [R].

3.1 Definition: For $\mathcal{U} \in \mathcal{C}_X$ we define the entropy of \mathcal{U} as

$$H_{\mu}(\mathcal{U}) = \inf_{\alpha \succeq \mathcal{U}} H_{\mu}(\alpha).$$

- 3.2 Proposition:
 - 1. If $\mathcal{U}, \mathcal{V} \in \mathcal{C}_X$, then $H_{\mu}(\mathcal{U} \vee \mathcal{V}) \leq H_{\mu}(\mathcal{U}) + H_{\mu}(\mathcal{V})$.
 - 2. For every $\mathcal{U} \in \mathcal{C}_X$, $H_{\mu}(T^{-1}\mathcal{U}) = H_{\mu}(\mathcal{U})$.
- 3.3 COROLLARY: If $\mathcal{U} \in \mathcal{C}_X$, then the sequence $H_{\mu}(\mathcal{U}_0^{n-1})$ is sub-additive.
- 3.4 COROLLARY: If $\mathcal{U} \in \mathcal{C}_X$, then the sequence $\frac{1}{n}H_{\mu}(\mathcal{U}_0^{n-1})$ converges to $\inf_n \frac{1}{n}H_{\mu}(\mathcal{U}_0^{n-1})$.

Two ways of generalizing the definition of measure theoretical entropy of a partition to a cover are:

- 3.5 Definition: If $\mathcal{U} \in \mathcal{C}_X$, define
 - 1. $h_{\mu}^{-}(\mathcal{U},T) = \lim_{n \to \infty} \frac{1}{n} H_{\mu}(\mathcal{U}_{0}^{n-1});$
 - 2. $h_{\mu}^{+}(\mathcal{U},T) = \inf_{\alpha \succeq \mathcal{U}} h_{\mu}(\alpha,T)$.

When T is understood, we usually omit it and write $h_{\mu}^{-}(\mathcal{U})$, $h_{\mu}^{+}(\mathcal{U})$.

We shall see later that in fact $h_{\mu}^{-}(\mathcal{U}) = h_{\mu}^{+}(\mathcal{U})$.

- 3.6 Proposition:
 - 1. $h_{\mu}^{-}(\mathcal{U}) \leq h_{\mu}^{+}(\mathcal{U})$.
 - 2. For any $m \in \mathbb{N}$, $h_{\mu}^{-}(\mathcal{U}, T) = \frac{1}{m} h_{\mu}^{-}(\mathcal{U}_{0}^{m-1}, T^{m})$.
 - 3. $h_{\mu}^{-}(\mathcal{U},T) = \lim_{n} \frac{1}{n} h_{\mu}^{+}(\mathcal{U}_{0}^{n-1},T^{n}).$

4. The ergodic case

Throughout this section, (X, \mathcal{B}, μ, T) is an ergodic m.t.d.s.

For $\mathcal{U} \in \mathcal{C}_X$, we denote by $\mathcal{N}(\mathcal{U}, \epsilon, \mu)$ the minimum number of elements of \mathcal{U} needed to cover all of X, up to a set of measure less than ϵ . When μ is understood we write $\mathcal{N}(\mathcal{U}, \epsilon)$.

By a straightforward calculation one deduces from [Sh1] p. 51, the following:

4.1 THEOREM: If (X, \mathcal{B}, μ, T) is an ergodic m.t.d.s and $\alpha \in \mathcal{P}_X$, then for any $0 < \epsilon < 1$, $h_{\mu}(\alpha, T) = \lim_{n \to \infty} \frac{1}{n} \log \mathcal{N}(\alpha_0^{n-1}, \epsilon)$.

In view of this result, a natural way to generalize the definition of measure theoretical entropy of a partition to covers will be the following:

$$h_{\mu}(\mathcal{U}, T) = \lim_{n \to \infty} \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \epsilon),$$

where $0 < \epsilon < 1$. In order to do so we have to show that the above limit exists and is independent of ϵ .

4.2 THEOREM: For any $0 < \epsilon < 1$, the sequence $\frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \epsilon)$ converges and the limit is independent of ϵ .

In order to prove this theorem we shall need a combinatorial lemma. Let us first introduce some terminology (in first reading the reader may skip the following discussion and turn to the discussion held after the proof of Lemma 4.3):

- We say that two intervals in \mathbb{N} , I and J, are separated if there is $n \in \mathbb{N}$ such that for any $i \in I$, $j \in J$ we have i < n < j or j < n < i.
- We say that a collection $\{I_i\}_{i\in A}$ of intervals in \mathbb{N} is a separated collection if any two of its elements are separated.
- We say that a collection $\{I_i\}_{i\in A}$ of subintervals of an interval [1, K] is a (λ, ϵ) separated cover of [1, K] (for $0 < \lambda < 1, 0 < \epsilon$), if it is separated and

$$\left|\frac{\left|\bigcup I_i\right|}{K} - \lambda\right| < \epsilon.$$

• Given a vector $\vec{\lambda} = (\lambda_1, \dots, \lambda_l)$, we denote

$$\nu_r(\vec{\lambda}) = \prod_{j=r}^l (1 - \lambda_j)$$

or just ν_r when $\vec{\lambda}$ is understood. For r > l we set $\nu_r = 1$. Note that for $j \leq l$ we have:

$$\sum_{r=j}^{l} \lambda_r \nu_{r+1} = 1 - \nu_j.$$

In the following combinatorial lemma, we will be given l separated collections $\{I_i^j\}_{i\in A_j}, j=1,\ldots,l$ of subintervals of a very long interval [1,K]. Our knowledge about these collections is that the members of the jth collection all have the same length, N_j , $N_1 << N_2 << \cdots << N_l$ and every collection is very "equally distributed" in [1,K] in some sense.

We would like to extract from these collections a separated collection that will cover as much as we can, from [1, K].

Let us denote by λ_j the percentage of [1,K] that is covered by the jth collection and by $\vec{\lambda}$, the corresponding vector. Then, $\lambda_l = 1 - \nu_l$ percent of [1,K] is covered by $\{I_i^l\}$. The complement is of size $K\nu_l$ and we could cover λ_{l-1} percent of it with the $\{I_i^{l-1}\}$'s. By now we covered $K(1 - \nu_{l-1})$ and we could cover λ_{l-2} percent of the complement by the $\{I_i^{l-2}\}$'s. So by now we covered $K(1 - \nu_{l-2})$ of [1, K]. We go on this way and extract a separated collection that covers $1 - \nu_1$ percent of [1, K]. Let us now make these ideas precise.

4.3 Lemma: For any l > 0, there exists a positive function

$$\varphi = \varphi(N_1, \dots, N_l, \eta_1, \dots, \eta_l, \epsilon)$$

(where $N_1 < N_2 < \cdots < N_l \in \mathbb{N}$, $\eta_i, \epsilon > 0$) such that

$$\limsup_{\epsilon \to 0} \limsup_{N_1 \to \infty} \limsup_{\eta_1 \to 0} \cdots \lim_{N_l \to \infty} \sup_{\eta_l \to 0} \varphi(N_i, \eta_i, \epsilon) = 0,$$

and such that if $0 < \lambda_j < 1$, j = 1, ..., l and $\{I_i^j\}_{i \in A_j}$ are separated collections of subintervals of [1, K] that satisfy:

- (a) for every $1 \le j \le l$, $|I_i^j| = N_j$,
- (b) for every $1 \leq j \leq l$, $\{I_i^j\}$ is a (λ_j, ϵ) -separated cover of [1, K],
- (c) for every $0 \le j < r \le l$, the number of subintervals, J, of [1, K], of length N_r , which are not (λ_j, ϵ) -separately covered by $\{I_i^j \subset J\}$ is less than $\eta_r K$, then there are sets $\tilde{A}_j \subset A_j$, $j = 1, \ldots, l$, such that $\{\{I_i^j\}_{i \in \tilde{A}_j}\}_{j=1}^l$ is a separated collection and [1, K] is $((1 \nu_1(\vec{\lambda})), \varphi(N_i, \eta_i, \epsilon))$ -separately covered by $\{\{I_i^j\}_{i \in \tilde{A}_j}\}_{j=1}^l$.

Proof: We will build the \tilde{A}_j 's by recursion, starting with j=l. Define $\tilde{A}_l=A_l$. Then from (b) we have that

$$\left|\frac{N_l|\tilde{A}_l|}{K} - \lambda_l\right| < \epsilon.$$

So if we will define $f_l(N_i, \eta_i, \epsilon) = \epsilon$, then f_l satisfies (*) and [1, K] is $(\lambda_l \nu_{l+1}, f_l(N_i, \eta_i, \epsilon))$ -separately covered by $\{I_i^l\}_{i \in \tilde{A}_l}$. Now, suppose we have defined $\tilde{A}_l, \ldots, \tilde{A}_{j+1}$ and positive functions f_l, \ldots, f_{j+1} , that satisfy (*), such that

 $\{\{I_i^r\}_{i\in\tilde{A_r}}\}_{r=j+1}^l$ is a separated collection and for every $j+1\leq r\leq l,$ [1,K] is $(\lambda_r\nu_{r+1},f_r(N_i,\eta_i,\epsilon))$ -separately covered by $\{I_i^r\}_{i\in\tilde{A_r}}$. Define now

$$\tilde{A}_j = \left\{ i \in A_j | I_i^j \text{ is separated from } \{I_s^r\}_{s \in \tilde{A}_r}, r = j + 1, \dots, l \right\}.$$

We want to estimate the size of \tilde{A}_j .

ESTIMATION FROM BELOW: Choose $j+1 \leq r \leq l$ and divide the members of $\{I_i^r\}_{i \in \tilde{A}_r}$ into good ones and bad ones according to (c), i.e., I_s^r is good if it is (λ_j, ϵ) -separately covered by $\{I_i^j \subset I_s^r\}$. We have at most $\eta_r K$, I_i^r 's, which are bad, and at most $|\tilde{A}_r|$, I_i^r 's, which are good. Every bad I_i^r rules out at most $\frac{N_r}{N_j} + 2$ i's in A_j from being in \tilde{A}_j . Every good I_i^r rules out at most $\frac{N_r}{N_j} (\lambda_j + \epsilon) + 2$ i's in A_j from being in \tilde{A}_j . In total, the maximum number of i's in A_j that are not in \tilde{A}_j is at most

$$\sum_{r=j+1}^{l} |\tilde{A}_r| \left(\frac{N_r}{N_j} (\lambda_j + \epsilon) + 2\right) + \eta_r K \left(\frac{N_r}{N_j} + 2\right) = (**).$$

Note that because [1, K] is $(\lambda_r \nu_{r+1}, f_r)$ -separately covered by $\{I_i^r\}_{i \in \tilde{A_r}}$, we must have

$$|\tilde{A}_r| \le \frac{K}{N_r} (\lambda_r \nu_{r+1} + f_r).$$

Using this we get

$$(**) \leq \sum_{r=j+1}^{l} \frac{K}{N_r} (\lambda_r \nu_{r+1} + f_r) \left(\frac{N_r}{N_j} (\lambda_j + \epsilon) + 2 \right) + \eta_r K \left(\frac{N_r}{N_j} + 2 \right)$$

$$= \sum_{r=j+1}^{l} \frac{K}{N_j} \lambda_r \nu_{r+1} (\lambda_j + \epsilon) + \frac{K}{N_j} (\lambda_j + \epsilon) f_r + \frac{2K}{N_r} (\lambda_r \nu_{r+1} + f_r)$$

$$+ \frac{K}{N_j} \eta_r N_r + 2\eta_r K$$

$$= \frac{K}{N_j} \lambda_j \left(\sum_{r=j+1}^{l} \lambda_r \nu_{r+1} \right)$$

$$+ \frac{K}{N_j} \sum_{r=j+1}^{l} \left\{ \epsilon \lambda_r \nu_{r+1} + (\lambda_j + \epsilon) f_r + 2 \frac{N_j}{N_r} (\lambda_r \nu_{r+1} + f_r) + \eta_r (N_r + 2N_j) \right\}$$

$$= (\aleph),$$

as mentioned earlier $\sum_{j+1}^{l} \lambda_r \nu_{r+1} = 1 - \nu_{j+1}$, so we have that

$$\begin{split} |\tilde{A}_j| &\geq |A_j| - (\aleph) \geq \frac{K}{N_j} (\lambda_j - \epsilon) - (\aleph) \\ &= \frac{K}{N_j} \bigg\{ \lambda_j \nu_{j+1} - \bigg\{ \epsilon + \sum_{r=j+1}^l \bigg\{ \epsilon \lambda_r \nu_{r+1} + (\lambda_j + \epsilon) f_r + 2 \frac{N_j}{N_r} (\lambda_r \nu_{r+1} + f_r) \\ &+ \eta_r (N_r + 2N_j) \bigg\} \bigg\} \bigg\}. \end{split}$$

Note that

$$\left| \epsilon + \sum_{r=j+1}^{l} \left\{ \epsilon \lambda_r \nu_{r+1} + (\lambda_j + \epsilon) f_r + 2 \frac{N_j}{N_r} (\lambda_r \nu_{r+1} + f_r) + \eta_r (N_r + 2N_j) \right\} \right|$$

$$\leq \epsilon + \sum_{r=j+1}^{l} \left\{ \epsilon + (1 + \epsilon) f_r + 2 \frac{N_j}{N_r} (1 + f_r) + \eta_r (N_r + 2N_j) \right\},$$

so if we denote the last expression by $\tilde{f}_j(N_i, \eta_i, \epsilon)$, then we see that \tilde{f}_j satisfies (*) and $|\tilde{A}_j| \geq \frac{K}{N_j} (\lambda_j \nu_{j+1} - \tilde{f}_j)$.

ESTIMATION FROM ABOVE: For every $j+1 \leq r \leq l$, we have that $|\tilde{A}_r| \geq \frac{K}{N_r}(\lambda_r\nu_{j+1}-f_r)$ and the number of bad I_i^r 's is at most $\eta_r K$, so we must have at least $\frac{K}{N_r}(\lambda_r\nu_{j+1}-f_r)-\eta_r K$ good I_i^r 's. Every good I_i^r rules out at least $\frac{N_r}{N_j}(\lambda_j-\epsilon)$ i's in A_j from being in \tilde{A}_j . So the number of i's in A_j that are not in \tilde{A}_j is at least

$$\sum_{r=j+1}^{l} \frac{N_r}{N_j} (\lambda_j - \epsilon) \left\{ \frac{K}{N_r} (\lambda_r \nu_{r+1} - f_r) - \eta_r K \right\}$$

and so

$$\begin{split} |\tilde{A}_{j}| &\leq |A_{j}| - \sum_{r=j+1}^{l} \frac{N_{r}}{N_{j}} (\lambda_{j} - \epsilon) \left\{ \frac{K}{N_{r}} (\lambda_{r} \nu_{r+1} - f_{r}) - \eta_{r} K \right\} \\ &\leq \frac{K}{N_{j}} (\lambda_{j} + \epsilon) - \sum_{r=j+1}^{l} \left\{ \frac{K}{N_{j}} (\lambda_{j} (\lambda_{r} \nu_{r+1} - f_{r}) - \epsilon (\lambda_{r} \nu_{r+1} - f_{r})) - \frac{K}{N_{j}} \eta_{r} N_{r} (\lambda_{j} - \epsilon) \right\} \\ &= \frac{K}{N_{j}} \left\{ \lambda_{j} \left(1 - \sum_{r=j+1}^{l} \lambda_{r} \nu_{r+1} \right) + \epsilon + \sum_{r=j+1}^{l} (\lambda_{j} f_{r} + \epsilon (\lambda_{r} \nu_{r+1} - f_{r}) + \eta_{r} N_{r} (\lambda_{j} - \epsilon)) \right\} \end{split}$$

$$\leq \frac{K}{N_j} \left\{ \lambda_j \nu_{j+1} + \epsilon + \sum_{r=j+1}^{l} (f_r + \epsilon(1+f_r) + \eta_r N_r (1+\epsilon)) \right\},\,$$

so if we denote

$$\hat{f}_j(N_i, \eta_i, \epsilon) = \epsilon + \sum_{r=i+1}^{l} (f_r + \epsilon(1 + f_r) + \eta_r N_r (1 + \epsilon)),$$

then \hat{f}_j satisfies (*) and $|\tilde{A}_j| \leq \frac{K}{N_j} (\lambda_j \nu_{j+1} + \hat{f}_j)$. Define $f_j = \max(\tilde{f}_j, \hat{f}_j)$; then we have that f_j satisfies (*) and

$$\left|\frac{|\tilde{A}_j|N_j}{K} - \lambda_j\nu_{j+1}\right| \leq f_j.$$

We have defined $\tilde{A}_j \subset A_j$ and a positive function f_j that satisfies (*), such that $\{\{I_i^r\}_{i \in \tilde{A}_i}\}_{r=j}^l$ is a separated collection and [1, K] is $(\lambda_j \nu_{j+1}, f_j)$ -separately covered by $\{I_i^j\}_{i \in \tilde{A}_j}$.

We continue this way and define sets $\tilde{A}_j \subset A_j$ and positive functions f_j , $j=1,\ldots,l$, such that $\{\{I_i^j\}_{i\in\tilde{A}_j}\}_{j=1}^l$ is a separated collection and [1,K] is $(\lambda_j\nu_{j+1},f_j)$ -separately covered by $\{I_i^j\}_{i\in\tilde{A}_i}$.

Note that this means

$$K\bigg(\sum_{j=1}^l \lambda_j \nu_{j+1} - \sum_{j=1}^l f_r\bigg) \leq \bigg|\bigcup_{j=1}^l \bigcup_{i \in \tilde{A}_j} I_i^j\bigg| \leq K\bigg(\sum_{j=1}^l \lambda_j \nu_{j+1} + \sum_{j=1}^l f_r\bigg)$$

and so, if we define $\varphi = \sum f_j$, then φ satisfies (*) and $\{\{I_i^j\}_{i \in \tilde{A}_j}\}_{j=1}^l$ is a $(1 - \nu_1, \varphi)$ -separated cover of [1, K].

Before turning to the proof of Theorem 4.2, let us present some terminology. In the following $\mathcal{U} = \{U_1, \ldots, U_M\}$ is a cover of X. For any $\rho > 0$, we can find a partition $\beta \succeq \mathcal{U}$, such that $\mathcal{N}(\mathcal{U}, \rho) = \mathcal{N}(\beta, \rho)$. Namely, we choose a subset of \mathcal{U} , of $N = \mathcal{N}(\mathcal{U}, \rho)$ elements, that covers X up to a set of measure $< \rho$, $\{U_{i1}, \ldots, U_{iN}\}$, and define $C_1 = U_{i1}$, $C_j = U_{ij} \setminus \bigcup_{m=1}^{j-1} U_{im}$, $j = 2, \ldots, N$. The C_j 's are disjoint, $C_j \subset U_{ij}$ and $\bigcup_{1}^{N} C_j = \bigcup_{j=1}^{N} U_{ij}$. Extend the collection $\{C_j\}_{j=1}^{N}$ to a partition, β , refining \mathcal{U} in some way. Then, because $\beta \succeq \mathcal{U}$, we have $\mathcal{N}(\beta, \rho) \geq N$ and, from our construction, it follows that $\mathcal{N}(\beta, \rho) \leq N$.

• We call such a partition a ρ -good partition for $\mathcal{U}.$

If (X, \mathcal{B}, μ, T) is aperiodic and $N \in \mathbb{N}, \rho, \delta > 0$ are given; then for a ρ -good partition β , for \mathcal{U}_0^{N-1} , we can construct a strong Rohlin tower with height N+1 and error $<\delta$. Let \tilde{B} denote the base of the tower and let $B \subset \tilde{B}$ be a

union of $\mathcal{N}(\beta, \rho)$ atoms of $\beta|_{\tilde{B}}$ that covers \tilde{B} up to a set of measure, less than $\rho\mu(\tilde{B})$.

- We call (β, \tilde{B}, B) a good base for $(\mathcal{U}, N, \rho, \delta)$.
- For a set $J \subset \mathbb{N}$, a (\mathcal{U}, J) -name is a function $f: J \to \{1, \dots, M\}$.
- f is a name of $x \in X$, if $x \in \bigcap_{j \in J} T^{-j} U_{f(j)}$.
- We denote the set of elements of X with f as a name by S_f .
- A set of (\mathcal{U}, J) -names, $\{f_i\}$, covers a set $C \in \mathcal{B}$, if $C \subset \bigcup_i S_{f_i}$.

In the sequel, we will want to estimate the number of elements of \mathcal{U}_0^{N-1} needed to cover a set $C \in \mathcal{B}$, i.e., we will want to estimate the number of $(\mathcal{U}, [0, N-1])$ -names needed to cover C. The usual way to do so is to find a collection of disjoint sets $J_i \subset [0, N-1], i=1,\ldots,m$, that covers most of [0, N-1], such that we can bound the number of (\mathcal{U}, J_i) -names needed to cover C. If we can cover C by R_i (\mathcal{U}, J_i) -names, $\{f_m^i\}_{m=1}^{R_i}$, then the set $\Gamma = \{f\colon [0, N-1] \to \{1,\ldots,M\} | f|_{J_i} \in \{f_m^i\}_{m=1}^{R_i}\}$ of $(\mathcal{U}, [0, N-1])$ -names covers C and contains $\prod R_i \cdot M^{N-\sum |J_i|}$ elements.

This situation occurs in our proofs in the following way: Let (β, \tilde{B}, B) be a good base for $(\mathcal{U}, N, \rho, \delta)$ and K >> N. Set C to be the set of elements of X that visits B at times $i_1 < \cdots < i_m$ between 0 to K - N (under the action of T). Then, we can cover C by no more than $\mathcal{N}(\beta, \rho)$, $(\mathcal{U}, [i_j, i_j + N - 1])$ -names. We can now turn to the proof of Theorem 4.2.

Proof of Theorem 4.2: If (X, \mathcal{B}, μ, T) is periodic, it follows from the ergodicity, that the system is a cyclic permutation on a finite set of atoms and for every $0 < \epsilon < 1$ we have $\lim \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \epsilon) = 0$. We assume, then, that the system is aperiodic and thus we are able to use the Strong Rohlin Lemma. Given $0 < \rho_2 < \rho_1 < 1$, we need to show that the limits $\lim \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_i)$, i = 1, 2, exist and are equal. Note that for every n, we have that $\mathcal{N}(\mathcal{U}_0^{n-1}, \rho_1) \leq \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_2)$ and thus $\limsup \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_1) \leq \liminf \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_2)$, so it is enough to prove that $\limsup \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_2) \leq \liminf \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_1)$. Let $0 < \epsilon_0 < \frac{1}{2}$ be given and denote

$$h_0 = \liminf \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_1), \quad L = \{n \in \mathbb{N} | |h_0 - \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \rho_1)| < \epsilon_0 \},$$

so L contains arbitrarily large numbers. Choose $\ell \in \mathbb{N}$ large enough so that

(*)
$$\left(\frac{1}{2}(1+\rho_1)\right)^{\ell} \log M < \epsilon_0, \quad \left(\frac{1}{2}(1+\rho_1)\right)^{\ell} + \epsilon_0 < \frac{1}{2}.$$

The towers construction: Remember the function φ from the combinatorial lemma (Lemma 4.3). It satisfies

$$\limsup_{\epsilon \to 0} \limsup_{N_1 \to \infty} \limsup_{\eta_1 \to 0} \cdots \limsup_{N_\ell \to \infty} \limsup_{\eta_\ell \to 0} \varphi(N_i, \eta_i, \epsilon) = 0$$

so we can choose $\epsilon > 0$ small enough such that

$$\limsup_{N_1 \to \infty} \limsup_{\eta_1 \to 0} \cdots \limsup_{N_\ell \to \infty} \limsup_{\eta_\ell \to 0} \varphi(N_i, \eta_i, \epsilon) < \epsilon_0.$$

Choose a small enough $\delta > 0$ (in a manner specified later). Choose $N_1 \in L$ large enough such that

$$\limsup_{\eta_1 \to 0} \cdots \limsup_{N_\ell \to \infty} \limsup_{\eta_\ell \to 0} \varphi(N_i, \eta_i, \epsilon) < \epsilon_0.$$

Find a good base (β_1, B_1, B_1) for $(\mathcal{U}, N_1, \rho_1, \delta)$. Choose $\eta_1 > 0$ small enough such that

$$\limsup_{N_2 \to \infty} \limsup_{\eta_2 \to 0} \cdots \limsup_{N_\ell \to \infty} \limsup_{\eta_\ell \to 0} \varphi(N_i, \eta_i, \epsilon) < \epsilon_0.$$

From the ergodicity, we can choose $N_2 \in L$ large enough such that

- $\begin{array}{l} \bullet \ \lim\sup_{\eta_2\to 0} \cdots \lim\sup_{N_\ell\to \infty} \lim\sup_{\eta_\ell\to 0} \varphi(N_i,\eta_i,\epsilon) < \epsilon_0; \\ \bullet \ \mu\{x||\frac{1}{N_2} \sum_{r=0}^{N_2-N_1} \chi_{B_1}(T^rx) \mu(B_1)| < \frac{\epsilon}{N_1}\} > 1 \eta_1. \end{array}$

Find a good base (β_2, B_2, B_2) for $(\mathcal{U}, N_2, \rho_1, \delta)$. Choose $\eta_2 > 0$ small enough such that

$$\limsup_{N_3\to\infty}\limsup_{\eta_3\to 0}\cdots\limsup_{N_\ell\to\infty}\limsup_{\eta_\ell\to 0}\varphi(N_i,\eta_i,\epsilon)<\epsilon_0.$$

Again, from the ergodicity, we can choose $N_3 \in L$ such that

- $\limsup_{\eta_3 \to 0} \cdots \limsup_{N_\ell \to \infty} \limsup_{\eta_\ell \to 0} \varphi(N_i, \eta_i, \epsilon) < \epsilon_0;$
- $\mu\{x||\frac{1}{N_3}\sum_{r=0}^{N_3-N_j}\chi_{B_j}(T^rx) \mu(B_j)| < \frac{\epsilon}{N_j}j = 1, 2\} > 1 \eta_2.$

In this way we construct, inductively, $N_1 < N_2 < \cdots < N_\ell$ (all from L), $\eta_1, \ldots, \eta_\ell$ and good bases $(\beta_j, \tilde{B}_j, B_j)$ for $(\mathcal{U}, N_j, \rho_1, \delta)$ such that $\varphi(N_i, \eta_i, \epsilon) < 0$ ϵ_0 ; and if we denote

$$F_{j} = \left\{ x \middle| \frac{1}{N_{j}} \sum_{r=0}^{N_{j}-N_{i}} \chi_{B_{i}}(T^{r}x) - \mu(B_{i}) \middle| < \frac{\epsilon}{N_{i}}, i = 1, \dots, j - 1 \right\}$$

then $\mu(F_i) > 1 - \eta_i$.

Define

$$E_K = \left\{ x \middle| \frac{1}{K} \sum_{r=0}^{K-N_j} \chi_{F_j}(T^r x) > 1 - \eta_j, \middle| \frac{1}{K} \sum_{r=0}^{K-N_j} \chi_{B_j}(T^r x) - \mu(B_j) \middle| < \frac{\epsilon}{N_j}, \right.$$

$$j = 1, \dots, \ell \right\}.$$

From the ergodicity, we know that there is a K_0 such that, for any $K > K_0$, we have $\mu(E_K) > \rho_2$. Fix $K > K_0$; we shall show that we can cover E_K by "few" $(\mathcal{U}, [0, K-1])$ -names. For a fixed $x \in E_K$ denote

$$A_j = \{0 \le m \le K - N_j | T^m x \in B_j \}$$

and, for every $i \in A_j$, let $I_i^j = [i, i + N_j - 1]$. We claim that the collections $\{I_i^j\}_{i \in A_j}, j = 1, \dots, \ell$, satisfy conditions (a),(b),(c) from the combinatorial lemma (Lemma 4.3), with $\lambda_j = N_j \mu(B_j)$. To see this, note first that because the height of the jth tower was $N_j + 1$, we have that each collection $\{I_i^j\}_{i \in A_j}$ is separated.

- (a) By definition $|I_i^j| = N_j$.
- (b) Because $x \in E_K$, we know that $\left|\frac{1}{K}\sum_{r=0}^{K-N_j}\chi_{B_j}(T^rx) \mu(B_j)\right| < \frac{\epsilon}{N_j}$ and thus $\left|\frac{N_j|A_j|}{K} \lambda_j\right| < \epsilon$. So the $\{I_i^j\}_{i\in A_j}$ forms a (λ_j, ϵ) -separated cover of [0, K-1].
 - (c) For $1 < r \le \ell$ we know, from the fact that $x \in E_K$, that

$$\frac{1}{K} \sum_{s=0}^{K-N_r} \chi_{F_r}(T^s x) > 1 - \eta_r$$

and thus we have $\frac{1}{K} \sum_{s=0}^{K-N_r} \chi_{F_r^c}(T^s x) < \eta_r$. If we use the definition of F_r , this becomes

$$\frac{1}{K} \# \left\{ 0 \le s \le K - N_r | \exists 1 \le j \le r - 1 \right.$$

$$\left| \frac{1}{N_r} \sum_{i=0}^{N_r - N_j} \chi_{B_j}(T^{i+s}x) - \mu(B_j) \right| \ge \frac{\epsilon}{N_j} \right\} < \eta_r$$

or equivalently

$$\#\left\{0 \le s \le K - N_r | \exists 1 \le j \le r - 1 \left| \frac{N_j}{N_r} \#\{i | i + s \in A_j\} - \lambda_j \right| \ge \epsilon \right\} < \eta_r K,$$

so if we choose $1 \le j < r \le \ell$, we must have

$$\#\Big\{J\subset [0,K-1]||J|=N_r, \Big|\frac{N_j}{N_r}\#\{i|I_i^j\subset J\}-\lambda_j\Big|\geq \epsilon\Big\}<\eta_rK.$$

In words, the number of subintervals of [0, K-1] of length N_r , J, which are not (λ_j, ϵ) -separately covered by those I_i^j which are contained in J is less than $\eta_r K$, as we wanted.

Using the combinatorial lemma, we can choose for every $x \in E_K$ a separated collection $\{\{I_i^j(x)\}_{i \in \tilde{A_j}}\}_{j=1}^\ell$ that covers at least $K(1 - \nu_1(\vec{\lambda}) - \epsilon_0)$ elements of [0, K-1]. Because these collections are separated, there is a 1-1 correspondence between them and their complements. Hence, the number of such covers is less than

(**)
$$\psi(K, \lambda_j, \epsilon_0) = \sum_{j \le (\nu_1 + \epsilon_0)K} {K \choose j}.$$

Fix such a collection $\{\{I_i^j\}_{i\in\tilde{A}_i}\}_{j=1}^{\ell}$ and set

$$C = \{x \in E_K | \{I_i^j(x)\} = \{I_i^j\}\}.$$

From the construction we see that, for every $1 \leq j \leq \ell$ we can cover B_j by no more than $2^{N_j(h_0+\epsilon_0)}$ $(\mathcal{U},[0,N_j-1])$ -names, thus we can cover C by no more than $2^{N_j(h_0+\epsilon_0)}$ (\mathcal{U},I_i^j) -names. So the number of $(\mathcal{U},[0,K-1])$ -names needed to cover C is at most

$$\prod_{j=1}^{\ell} (2^{N_j(h_0 + \epsilon_0)})^{|\tilde{A}_j|} \cdot M^{K(\nu_1 + \epsilon_0)} = 2^{(\sum_j N_j |\tilde{A}_j|)(h_0 + \epsilon_0)} \cdot M^{K(\nu_1 + \epsilon_0)}
\leq 2^{K(h_0 + \epsilon_0)} \cdot M^{K(\nu_1 + \epsilon_0)}.$$

Finally, we get from this and (**) that

$$\mathcal{N}(\mathcal{U}_0^{K-1}, \rho_2) \le \psi(K, \lambda_i, \epsilon_0) \cdot 2^{K(h_0 + \epsilon_0)} \cdot M^{K(\nu_1 + \epsilon_0)}$$

and so

$$\frac{1}{K}\log \mathcal{N}(\mathcal{U}_0^{K-1}, \rho_2) \le \frac{1}{K}\log \psi(K, \lambda_j, \epsilon_0) + h_0 + \epsilon_0 + \nu_1 \log M + \epsilon_0 \log M.$$

If, in the construction of the towers, we choose δ small enough and N_1 large enough, we can ensure that $\lambda_j = N_j \mu(B_j) > (1 - \rho_1)/2$ and thus $1 - \lambda_j < (1 + \rho_1)/2 \Rightarrow \nu_1 < (\frac{1+\rho_1}{2})^{\ell}$ and so, from (*), we have that

$$u_1 \log M < \epsilon_0, \quad \nu_1 + \epsilon_0 \le \frac{1}{2};$$

hence, from Lemma 2.3,

$$\psi(K, \lambda_j, \epsilon_0) \le 2^{K \cdot H((\frac{1+\rho_1}{2})^{\ell} + \epsilon_0)}$$

so

$$\frac{1}{K}\log \mathcal{N}(\mathcal{U}_0^{K-1}, \rho_2) \le h_0 + \epsilon_0(2 + \log M) + H\left(\left(\frac{1+\rho_1}{2}\right)^{\ell} + \epsilon_0\right) \Rightarrow$$

$$\limsup_K \frac{1}{K}\log \mathcal{N}(\mathcal{U}_0^{K-1}, \rho_2) \le h_0 + \epsilon_0(2 + \log M) + H\left(\left(\frac{1+\rho_1}{2}\right)^{\ell} + \epsilon_0\right).$$

Letting $\ell \to \infty$ and $\epsilon_0 \to 0$ we get

$$\limsup_{K} \frac{1}{K} \log \mathcal{N}(\mathcal{U}_0^{K-1}, \rho_2) \le h_0$$

as desired.

After proving Theorem 4.2, we can define, for an ergodic m.t.d.s, (X, \mathcal{B}, μ, T) and a cover $\mathcal{U} = \{U_1, \dots, U_M\}$ of X, a notion of measure theoretical entropy in the following way:

$$h_{\mu}^{e}(\mathcal{U}, T) = \lim_{n \to \infty} \frac{1}{n} \log \mathcal{N}(\mathcal{U}_{0}^{n-1}, \epsilon) \text{ where } 0 < \epsilon < 1.$$

Often we omit T and write $h_{\mu}^{e}(\mathcal{U})$.

4.4 Theorem: $h_{\mu}^{e}(\mathcal{U}) = h_{\mu}^{+}(\mathcal{U})$.

Proof: As before, if the system is periodic then $h_{\mu}^{e}(\mathcal{U}) = h_{\mu}^{+}(\mathcal{U}) = 0$. We assume then that the system is aperiodic. For every partition $\alpha \succeq \mathcal{U}, n \in \mathbb{N}$ and $0 < \epsilon < 1$, we have that $\mathcal{N}(\mathcal{U}_{0}^{n-1}, \epsilon) \leq \mathcal{N}(\alpha_{0}^{n-1}, \epsilon)$ and therefore

$$h_{\mu}^{e}(\mathcal{U}) = \lim \frac{1}{n} \log \mathcal{N}(\mathcal{U}_{0}^{n-1}, \epsilon) \leq \lim \frac{1}{n} \log \mathcal{N}(\alpha_{0}^{n-1}, \epsilon) = h_{\mu}(\alpha)$$
$$\Rightarrow h_{\mu}^{e}(\mathcal{U}) \leq h_{\mu}^{+}(\mathcal{U}).$$

To prove the other inequality, we shall show that for a given $0<\epsilon<\frac{1}{4}$ and $n\in\mathbb{N}$ we have

(*)
$$h_{\mu}^{+}(\mathcal{U}) \leq \frac{1}{n} \log \mathcal{N}(\mathcal{U}_{0}^{n-1}, \epsilon) + \sqrt{\epsilon} \cdot \log M + H(\sqrt{\epsilon}).$$

Once we prove (*), we are done, for letting $n \to \infty$ we get $h_{\mu}^{+}(\mathcal{U}) \leq h_{\mu}^{e}(\mathcal{U}) + \sqrt{\epsilon} \cdot \log M + H(\sqrt{\epsilon})$ and now, letting $\epsilon \to 0$, we get $h_{\mu}^{+}(\mathcal{U}) \leq h_{\mu}^{e}(\mathcal{U})$ as desired.

Proof of (*): Choose $\delta > 0$ such that $\epsilon + \delta < \frac{1}{4}$ and find a good base (β, \tilde{B}, B) for $(\mathcal{U}, n, \epsilon, \delta)$. (Now we take \tilde{B} to be a base for a strong Rohlin tower of height N and error $<\delta$ and not of height N+1 as before.) Set $N=\mathcal{N}(\mathcal{U}_0^{n-1}, \epsilon)$, so B is the union of N elements of $\beta|_{\tilde{B}}$. We index these elements by sequences i_0, \ldots, i_{n-1} such that if $B_{i_0, \ldots, i_{n-1}}$ is one, then $T^j(B_{i_0, \ldots, i_{n-1}}) \subset U_{i_j}$ for every $0 \leq j \leq n-1$. We have that $\mu(X \setminus \bigcup_{i=0}^{n-1} T^i(B)) \leq \epsilon + \delta$. Let $\hat{\alpha} = \{\hat{A}_1, \ldots, \hat{A}_M\}$ be the partition of

$$E = \bigcup_{i=0}^{n-1} T^i(B)$$

defined by

$$\hat{A}_m = \bigcup \{ T^j(B_{i_0,\dots,i_{n-1}}) | j \in [0, n-1], i_j = m \}.$$

Note that $\hat{A}_m \subset U_m$ for every $1 \leq m \leq M$. Extend $\hat{\alpha}$ to a partition α of X, refining \mathcal{U} in some way. Set $\eta^2 = \epsilon + \delta$ and define, for every k > n, $f_k(x) = \frac{1}{k} \sum_{i=0}^{k-1} \chi_E(T^j x)$. We have that $0 \leq f_k \leq 1$ and $\int f_k > 1 - \eta^2$, so if we denote

$$G_k = \{x | f_k(x) > 1 - \eta\}$$

then

$$\eta \cdot \mu(G_k^c) \le \int_{G_k^c} 1 - f_k \le \int 1 - f_k \le \eta^2$$
$$\Rightarrow \mu(G_k) \ge 1 - \eta.$$

We shall show that we can cover G_k by "few" $(\alpha, [0, k-1])$ -names. Partition G_k according to the values of $0 \le i \le k-n$ such that $T^ix \in B$. Note that if $x \in G_k$ and $0 \le i_1 < \dots < i_m \le k-n$ are the times at which x visits B, then the collection $\{[i_j, i_j + n - 1]\}_{j=1}^m$ covers all but at most $\eta k + 2n$ elements of [0, k-1]. Because each element of this partition defines a collection of subintervals of [0, k-1], of length n, that covers all but at most $\eta k + 2n$ elements of [0, k-1] in a 1-1 manner, we have that the number of elements in the partition of G_k is at most

$$\psi(k, n, \eta) = \sum_{j < (n + \frac{2n}{n})k} \binom{k}{j}.$$

We fix an element C of this partition of G_k and want to estimate the number of $(\alpha, [0, k-1])$ -names needed to cover it. If $0 \le i_1 < \dots < i_m \le k-n$ are the times elements of C visit B, then we need at most N $(\alpha, [i_j, i_j + n - 1])$ -names to cover C. Because the size of $[0, k-1] \setminus \bigcup_j [i_j, i_j + n - 1]$ is at most $\eta k + 2n$, we need at most $N^{k/n} \cdot M^{\eta k + 2n}$ $(\alpha, [0, k-1])$ -names to cover C. Finally, we have that we can cover G_k by no more than

$$\psi(k,n,\eta) \cdot N^{k/n} \cdot M^{\eta k + 2n}$$

 $(\alpha, [0, k-1])$ -names. Because $\mu(G_k) > 1 - \eta$, this means that

$$\frac{1}{k}\log \mathcal{N}(\alpha_0^{k-1}, \eta) \leq \frac{1}{k}\log \psi(k, n, \eta) + \frac{1}{n}\log N + \left(\eta + \frac{2n}{k}\right)\log M.$$

Recall that once $(\eta+2n/k)<\frac{1}{2},$ we have $\psi(k,n,\eta)\leq 2^{k\cdot H(\eta+2n/k)}$ and so

$$h_{\mu}(\alpha) = \lim \frac{1}{k} \log \mathcal{N}(\alpha_0^{k-1}, \eta) \le \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \epsilon) + \eta \cdot \log M + H(\eta),$$

hence

$$h_{\mu}^{+}(\mathcal{U}) \leq \frac{1}{n} \log \mathcal{N}(\mathcal{U}_{0}^{n-1}, \epsilon) + \sqrt{\epsilon + \delta} \cdot \log M + H(\sqrt{\epsilon + \delta}).$$

Letting $\delta \to 0$ we get

$$h_{\mu}^{+}(\mathcal{U}) \leq \frac{1}{n} \log \mathcal{N}(\mathcal{U}_{0}^{n-1}, \epsilon) + \sqrt{\epsilon} \cdot \log M + H(\sqrt{\epsilon}),$$

as desired.

4.5 Theorem: $h_{\mu}^{+}(\mathcal{U}) = h_{\mu}^{-}(\mathcal{U}).$

We already know that $h_{\mu}^{+}(\mathcal{U}) \geq h_{\mu}^{-}(\mathcal{U})$ (Proposition 3.6), so we only need to prove the other inequality. Before we turn to the proof, let us present some terminology and prove a combinatorial lemma.

Let Λ be a finite alphabet of M letters, $k, n \in \mathbb{N}$, k >> n, $0 < \delta < 1$ and $\omega = \omega_0^{k-1}$, a word of length k on Λ . (The symbol a_r^s stands for a_r, \ldots, a_s .) Denote $\Gamma = \Lambda^n$.

- An (n, k, δ) -packing is a pair $C = (i_0^{m-1}, \gamma_0^{m-1})$ where $0 \le i_j \le k n$, $\gamma_j \in \Gamma$, $j = 0, \ldots, m-1, i_j + n 1 < i_{j+1}$ and $\frac{m \cdot n}{k} > 1 \delta$. (We think of an (n, k, δ) -packing as instructions to "almost" write a word of length k; we just fill it with the γ_j 's, where γ_j starts at the i_j letter and there will be no more than δk letters to add.)
- An (n, k, δ) -packing for ω is an (n, k, δ) -packing, $\mathcal{C} = (i_0^{m-1}, \gamma_0^{m-1})$, such that $\omega_{i_{\delta}}^{i_{j}+n-1} = \gamma_{j}$.
- If μ_1, μ_2 are probability distributions on Γ then

$$||\mu_1 - \mu_2|| = \max_{\gamma} |\mu_1(\gamma) - \mu_2(\gamma)|.$$

- An (n, k, δ) -packing, $C = (i_0^{m-1}, \gamma_0^{m-1})$, induces a probability distribution on Γ , denoted by $P_{\mathcal{C}}$, by the formula $P_{\mathcal{C}}(\gamma) = \frac{1}{m} \# \{0 \leq j \leq m-1 | \gamma = \gamma_j \}$.
- If μ is a probability distribution on Γ and C is an (n, k, δ) -packing, then we say that C is (n, k, δ, μ) , if $||\mu P_C|| < \delta$. We say that ω is (n, k, δ, μ) , if there is an (n, k, δ) -packing for ω , which is (n, k, δ, μ) .
- 4.6 Lemma: If μ is a probability distribution on Γ , with "average entropy"

$$h_0 = -\frac{1}{n} \sum_{\gamma \in \Gamma} \mu(\gamma) \log \mu(\gamma),$$

then there exists a positive function $\varphi(\delta)$ such that $\varphi(\delta) \to 0$ as $\delta \to 0$ and such that if $0 < \delta < \frac{1}{2}$ then, for any k > n, the number of words $\omega \in \Lambda^k$, which are (n, k, δ, μ) , is at most $2^{k(h_0 + \varphi(\delta))}$.

Proof: Fix k > n. We want to estimate the number of words $\omega = \omega_0^{k-1} \in \Lambda^k$, that are (n, k, δ, μ) . For every such word ω we can choose an (n, k, δ) -packing $\mathcal{C} = (i_0^{m-1}, \gamma_0^{m-1})$ which is (n, k, δ, μ) . In this way we define a map

$$\pi: \{\omega \in \Lambda^k | \omega \text{ is } (n, k, \delta, \mu)\} \to \{\mathcal{C} | \mathcal{C} \text{ is an } (n, k, \delta, \mu)\text{-packing}\}.$$

If $C = (i_0^{m-1}, \gamma_0^{m-1})$ is an (n, k, δ) -packing, then $\frac{n \cdot m}{k} > 1 - \delta$. This means that $|\pi^{-1}(C)| \leq |\Lambda|^{\delta k} = M^{\delta k}$. So we have that

$$\#\{\omega \in \Lambda^k | \omega \text{ is } (n, k, \delta, \mu)\} \leq M^{\delta k} \#\{\mathcal{C} | \mathcal{C} \text{ is an } (n, k, \delta, \mu)\text{-packing}\}.$$

Let us now estimate the number of (n, k, δ, μ) -packings, $\mathcal{C} = (i_0^{m-1}, \gamma_0^{m-1})$: The number of sequences, i_0^{m-1} , such that $0 \le i_j \le k - n$, $i_j + n - 1 < i_{j+1}$ and $\frac{m \cdot n}{k} > 1 - \delta$ is at most $\sum_{j < \delta k} \binom{k}{j}$. From Lemma 2.3 we know that for $\delta < \frac{1}{2}$, this sums to something $\leq 2^{H(\delta)k}$.

Fix such a sequence i_0^{m-1} . Let us now estimate the number of sequences, γ_0^{m-1} , such that the (n,k,δ) -packing $\mathcal{C}=(i_0^{m-1},\gamma_0^{m-1})$ is (n,k,δ,μ) .

Denote $\nu = \bigotimes_{1}^{m} \mu$, the product measure on Γ^{m} . If $\gamma_{0}^{m-1} \in \Gamma^{m}$, then

$$\begin{split} \nu(\gamma_0^{m-1}) &= \prod_{\gamma \in \Gamma} \mu(\gamma)^{\#\{0 \le j \le m-1 \mid \gamma = \gamma_j\}} = 2^{\sum_{\{\gamma \mid \mu(\gamma) \ne 0\}} \#\{0 \le j \le m-1 \mid \gamma = \gamma_j\} \cdot \log \mu(\gamma)} \\ &= 2^{m \sum_{\{\gamma \mid \mu(\gamma) \ne 0\}} \frac{1}{m} \#\{0 \le j \le m-1 \mid \gamma = \gamma_j\} \cdot \log \mu(\gamma)}. \end{split}$$

Now the function $f: \{(x_{\gamma})_{\gamma \in \Gamma} \in \mathbb{R}^{\Gamma} | \sum x_{\gamma} = 1\} \to \mathbb{R}$, defined by

$$f(\vec{x}_{\gamma}) = \sum_{\{\gamma \mid \mu(\gamma) \neq 0\}} x_{\gamma} \cdot \log \mu(\gamma),$$

is continuous and so there is a positive function $\psi(\delta)$ such that $\psi(\delta) \to 0$ as $\delta \to 0$ and, if $\max_{\gamma} |x_{\gamma} - \mu(\gamma)| < \delta$, then $|f(\vec{x}_{\gamma}) - f(\mu(\gamma))| < \psi(\delta)$ (note that ψ depends only on n, μ). So if $\gamma_0^{m-1} \in \Gamma^m$ is such that $\mathcal{C} = (i_0^{m-1}, \gamma_0^{m-1})$ is a (n, k, δ, μ) -packing, it follows that

$$\begin{split} \nu(\gamma_0^{m-1}) &= 2^{m\sum_{\{\gamma \mid \mu(\gamma) \neq 0\}} \frac{1}{m} \#\{0 \leq j \leq m-1 \mid \gamma = \gamma_j\} \cdot \log \mu(\gamma)} \\ &> 2^{m(\sum_{\{\gamma \mid \mu(\gamma) \neq 0\}} \mu(\gamma) \log \mu(\gamma) - \psi(\delta))} > 2^{k(-h_0 - \frac{\psi(\delta)}{n})}. \end{split}$$

where the last inequality follows from the fact that m < k/n and the definition of h_0 . We conclude that an upper bound for the number of such sequences γ_0^{m-1} is $2^{k(h_0+\psi(\delta)/n)}$. If we collect these estimations, we reach the conclusion that for $0 < \delta < \frac{1}{2}$

$$\#\{\omega \in \Lambda^k | \omega \text{ is } (n, k, \delta, \mu)\} \leq M^{\delta k} \cdot 2^{H(\delta)k} \cdot 2^{k(h_0 + \psi(\delta)/n)}$$
$$< 2^{k(h_0 + \psi(\delta)/n + H(\delta) + \delta \cdot \log M)},$$

so
$$\varphi(\delta) = \psi(\delta)/n + H(\delta) + \delta \cdot \log M$$
 is our desired function.

Proof of Theorem 4.5: We want to show that for an ergodic system (X, \mathcal{B}, μ, T) and a cover $\mathcal{U} = \{U_1, \dots, U_M\}$ of X, we have $h_{\mu}^+(\mathcal{U}) \leq h_{\mu}^-(\mathcal{U})$. As before, if the system is periodic, then, from the ergodicity, it must be a cyclic permutation on a finite set of atoms. Therefore $h_{\mu}^+(\mathcal{U}) = h_{\mu}^-(\mathcal{U}) = 0$. In the aperiodic case we can use the Strong Rohlin Lemma.

Let $\epsilon > 0$. We shall show that $h^+_{\mu}(\mathcal{U}) \leq h^-_{\mu}(\mathcal{U}) + 2\epsilon$. From the definition of $h^-_{\mu}(\mathcal{U})$, we can find $n \in \mathbb{N}$ and a partition $\beta \succeq \mathcal{U}_0^{n-1}$ such that $\frac{1}{n}H_{\mu}(\beta) \leq h^-_{\mu}(\mathcal{U}) + \epsilon$. As $\beta \succeq \mathcal{U}_0^{n-1}$, we can index the elements of β by sequences $i_0^{n-1} = i_0, \ldots, i_{n-1}$, such that if $\tilde{B}_{i_0^{n-1}}$ is one, then $T^j\tilde{B}_{i_0^{n-1}} \subset U_{i_j}, j = 0, \ldots, n-1$. We can assume that each sequence i_0^{n-1} corresponds to at most one element of β , for otherwise, we could unite these elements and get a coarser partition β' , still refining \mathcal{U}_0^{n-1} , such that $\frac{1}{n}H_{\mu}(\beta') \leq \frac{1}{n}H_{\mu}(\beta) \leq h^-_{\mu}(\mathcal{U}) + \epsilon$. Set $\Gamma = \{1, \ldots, M\}^n$. So the elements of β are indexed by Γ . (If $\gamma \in \Gamma$ does not correspond to an element of β , in the above way, we set $\tilde{B}_{\gamma} = \emptyset$.) In this way, the partition β defines a probability distribution ν on Γ , defined by $\nu(\gamma) = \mu(\tilde{B}_{\gamma})$, and we have that $h_0 = \frac{1}{n}H_{\mu}(\beta)$ is the "average entropy" (see Lemma 4.6) of ν .

Choose $\delta>0$ (in a manner specified later) and let F be a base for a strong Rohlin tower (with respect to β) of height n and $\operatorname{error} \leq \delta^2$. Denote the atoms of $\beta|_F$ by $B_{\gamma}, \gamma \in \Gamma$ (where $B_{\gamma} = \tilde{B}_{\gamma} \cap F$) and define a partition $\tilde{\alpha} = \{\tilde{A}_1, \ldots, \tilde{A}_M\}$ of $E = \bigcup_{j=0}^{n-1} T^j F$ by $\tilde{A}_m = \bigcup \{T^j B_{i_0^{n-1}} | j \in \{0, \ldots, n-1\}, i_j = m\}$. Note that $\tilde{A}_m \subset U_m$. Extend $\tilde{\alpha}$ to a partition α of X refining \mathcal{U} , in some way. The set of indices of elements of α , Λ (the alphabet in which α -names are written), contains $\{1,\ldots,M\}$ and we can always build α such that $|\Lambda| \leq 2M$. We slightly abuse our notation and denote $\Gamma = \Lambda^n$. In this way, ν is still a probability distribution on Γ .

CLAIM: If δ is small enough, then $h_{\mu}(\alpha) \leq h_0 + \epsilon$.

Once we prove this claim, we are done, because then

$$h_{\mu}^{+}(\mathcal{U}) \leq h_{\mu}(\alpha) \leq h_{0} + \epsilon \leq h_{\mu}^{-}(\mathcal{U}) + 2\epsilon.$$

Proof of Claim: For k >> n, we look at the function $f_k(x) = \frac{1}{k} \sum_{0}^{k-1} \chi_E(T^j x)$. We have that $0 \le f_k \le 1$ and $\int f_k > 1 - \delta^2$. Therefore

$$\delta \cdot \mu(\{x|1 - f_k(x) > 1 - \delta\}) \le \int_{\{x|1 - f_k(x) > 1 - \delta\}} 1 - f_k \le \int 1 - f_k \le \delta^2$$

$$\Rightarrow \mu(\{x|f_k(x) \ge 1 - \delta\}) \ge 1 - \delta.$$

Denote $G_1^k = \{x | f_k(x) \ge 1 - \delta\}$. For $x \in G_1^k$, there are at most δk times $0 \le i \le k - 1$ such that $T^i x \notin E$. Define

$$G_2^k = \left\{ x | \left| \frac{1}{k} \sum_{i=0}^{k-n} \chi_A(T^i x) - \mu(A) \right| < \delta, A \in \beta|_F \cup \{F\} \right\}.$$

Let us see what we can say about the $(\alpha, [0, k-1])$ -name of an element x of $G_1^k \cap G_2^k$. Fix such an x and denote by $i_0 < \cdots < i_{m-1}$ the times between 0 to k-n at which x visits F. We have that $0 \le i_j \le k-n$, $i_j+n-1 < i_{j+1}$ (that is because the height of the tower is n). Except for at most 2n times (n at the beginning and n at the end), x visits E exactly at the times i_j, \ldots, i_j+n-1 , $j=1,\ldots,m-1$. Therefore, we must have

$$n \cdot m \ge (1 - \delta)k - 2n \Rightarrow \frac{n \cdot m}{k} \ge 1 - \left(\delta + \frac{2n}{k}\right).$$

Denote the $(\alpha, [0, k-1])$ -name of x by $\omega = \omega_0^{k-1}$ ($\omega_i \in \Lambda$), and $\gamma_j = \omega_{i_j} \cdots \omega_{i_j+n-1} \in \Gamma$, $j = 0, \ldots, m-1$. We have that $\mathcal{C} = (i_0^{m-1}, \gamma_0^{m-1})$ is an $(n, k, \delta + 2n/k)$ -packing for ω . Let us now see what we can say about the distribution $P_{\mathcal{C}}$ this packing induces on Γ .

For $0 \le r \le k-n$, we have that $T^r x \in B_{\gamma}$ if and only if there is a $0 \le j \le m-1$ such that $r = i_j$ and $\gamma = \gamma_j$. Therefore, because $x \in G_2^k$,

- $\forall \gamma \in \Gamma \mid \frac{1}{k} \# \{ 0 \le j \le m 1 | \gamma = \gamma_j \} \mu(B_\gamma) \mid < \delta;$
- $\left|\frac{m}{k} \mu(F)\right| < \delta$.

Note that $\mu(F) > (1-\delta)/n$, so if δ is sufficiently small, we can guarantee that $|k/m - 1/\mu(F)|$ would be arbitrarily small and in turn we can guarantee that for every $\gamma \in \Gamma$,

$$\left| \frac{k}{m} \cdot \frac{1}{k} \# \{ 0 \le j \le m - 1 | \gamma = \gamma_j \} - \frac{\mu(B_\gamma)}{\mu(F)} \right| = |P_{\mathcal{C}}(\gamma) - \nu(\gamma)|$$

would be arbitrarily small. This is to say that $||P_{\mathcal{C}} - \nu||$ is arbitrarily small. We see that there is a positive function $\psi(\delta)$, independent of k, such that $\psi(\delta) \to 0$ as $\delta \to 0$ and such that, if $x \in G_1^k \cap G_2^k$ and ω is its $(\alpha, [0, k-1])$ -name, then ω is $(n, k, \psi(\delta) + 2n/k, \nu)$.

Recall the function φ from Lemma 4.6. There is an $\eta_0 > 0$ such that for every $0 < \eta < \eta_0$, $\varphi(\eta) < \epsilon$. Choose k to be large enough so that $2n/k < \eta_0/2$ and the error δ of the tower to be so small such that $\psi(\delta) < \eta_0/2$, and conclude, from Lemma 4.6, that the number of $(\alpha, [0, k-1])$ -names of elements of $G_1^k \cap G_2^k$ is at most $2^{k(h_0+\epsilon)}$. From the ergodicity, we know that for large enough k,

 $\mu(G_1^k \cap G_2^k) > 1 - 2\delta$, so we have

$$h_{\mu}(\alpha) = \lim \frac{1}{k} \log \mathcal{N}(\alpha_0^{k-1}, 2\delta) \le h_0 + \epsilon,$$

as desired.

Remarks:

- If (X,T) is totally ergodic, i.e., (X,T^n) is ergodic for every $n \in \mathbb{N}$, then we can look at expressions like $h_{\mu}^e(\mathcal{U}_0^{n-1},T^n)$. It follows from the definition that $h_{\mu}^e(\mathcal{U},T)=\frac{1}{n}h_{\mu}^e(\mathcal{U}_0^{n-1},T^n)$. This enables us to prove the last theorem without any hard work. We know from Theorem 4.4 that $h_{\mu}^e(\mathcal{U},T)=h_{\mu}^+(\mathcal{U},T)$ and therefore $h_{\mu}^+(\mathcal{U},T)=\frac{1}{n}h_{\mu}^+(\mathcal{U}_0^{n-1},T^n)$. But then, Proposition 3.6, (which is elementary), gives $h_{\mu}^-(\mathcal{U},T)=\lim \frac{1}{n}h_{\mu}^+(\mathcal{U}_0^{n-1},T^n)=h_{\mu}^+(\mathcal{U},T)$ and this gives the desired result.
- The definitions of h⁺_μ(U), h⁻_μ(U) were introduced in [R] and discussed also in [Ye], [HMRY]. There, a proof of their equality was given only in the case where (X, T) is a t.d.s and U is an open cover. The proof was based on a reduction to a uniquely ergodic case and then a use of a variational inequality, proved in [GW].
- The definition of $h_{\mu}^{e}(\mathcal{U})$ is new. This definition helps us to prove directly a slight generalization of the variational inequality, proved in [GW] and mentioned above, to the non-topological case (Theorem 6.1).
- The proofs of Theorems 4.2, 4.4, 4.5 and Lemma 4.6 are based on ideas of B. Weiss and E. Glasner

5. Ergodic decomposition for h_{μ}^{+}, h_{μ}^{-}

5.1 THEOREM (Proposition 5 in [HMRY]): Let $\mathcal{U} = \{U_1, \dots, U_M\}$ be a cover of X, and $\mu = \int \mu_x d\mu(x)$ the ergodic decomposition of μ with respect to T. Then

$$h_{\mu}^{+}(\mathcal{U},T) = \int h_{\mu_{x}}^{+}(\mathcal{U},T)d\mu(x), \quad h_{\mu}^{-}(\mathcal{U},T) = \int h_{\mu_{x}}^{-}(\mathcal{U},T)d\mu(x).$$

5.2 COROLLARY: $h_{\mu}^{+}(\mathcal{U}) = h_{\mu}^{-}(\mathcal{U})$.

Proof: It follows immediately from the above and the ergodic case (Theorem 4.5).

From now on we will denote the number $h_{\mu}^{+}(\mathcal{U},T)=h_{\mu}^{-}(\mathcal{U},T)(=h_{\mu}^{e}(\mathcal{U},T))$ in the ergodic case) simply by $h_{\mu}(\mathcal{U},T)$ or $h_{\mu}(\mathcal{U})$ or $h(\mathcal{U})$, when no ambiguity can occur.

6. Variational relations

As always, let $\mathcal{U} = \{U_1, \dots, U_M\}$ be a cover of the m.t.d.s (X, \mathcal{B}, μ, T) . We can define the "combinatorial entropy" of \mathcal{U} as

$$h_c(\mathcal{U}, T) = \lim_n \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}),$$

where $\mathcal{N}(\mathcal{V})$ is the minimum number of elements of \mathcal{V} needed to cover the whole space. Note that the sequence $\log \mathcal{N}(\mathcal{U}_0^{n-1})$ is sub-additive, hence the limit exists. If (X,T) is a t.d.s and \mathcal{U} is an open cover, then we denote $h_{top}(\mathcal{U},T) = h_c(\mathcal{U},T)$.

The next theorem was proved in [GW] for topological dynamical systems and measurable covers. We give here a simple proof for the non-topological case that uses the definition of $h^e_{\mu}(\mathcal{U})$.

6.1 Theorem: $h_{\mu}(\mathcal{U}) \leq h_{c}(\mathcal{U})$.

Proof: First, if the system is ergodic, then $h_{\mu}(\mathcal{U}) = \lim \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}, \frac{1}{2})$ and, as $\mathcal{N}(\mathcal{U}_0^{n-1}, \frac{1}{2}) \leq \mathcal{N}(\mathcal{U}_0^{n-1})$, we have

$$h_{\mu}(\mathcal{U}) \le \lim \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}) = h_{top}(\mathcal{U}),$$

as desired. In the non-ergodic case, let $\mu = \int \mu_x d\mu(x)$ be the ergodic decomposition of μ . By Theorem 5.1, $h_{\mu}(\mathcal{U}) = \int h_{\mu_x}(\mathcal{U}) d\mu(x)$, so from the first part we see that $h_{\mu}(\mathcal{U}) \leq h_c(\mathcal{U})$.

Remark: Another simple proof of the above uses the definition of $h_{\mu}^{-}(\mathcal{U})$:

$$H_{\mu}(\mathcal{U}_0^{n-1}) = \inf_{\alpha \succeq \mathcal{U}_0^{n-1}} H_{\mu}(\alpha) \le \inf_{\alpha \succeq \mathcal{U}_0^{n-1}} \log |\alpha| \le \log \mathcal{N}(\mathcal{U}_0^{n-1})$$

$$\Rightarrow h_{\mu}(\mathcal{U}) = \lim_{n \to \infty} \frac{1}{n} H_{\mu}(\mathcal{U}_0^{n-1}) \le \lim_{n \to \infty} \frac{1}{n} \log \mathcal{N}(\mathcal{U}_0^{n-1}) = h_c(\mathcal{U}).$$

From this stage until the end of this paper we assume that (X,T) is a t.d.s. We denote by $\mathcal{M}_T(X)$ the set of T-invariant probability measures on X, and by $\mathcal{M}_T^e(X)$ the set of ergodic ones. Also, \mathcal{C}_X^o will denote the set of finite open covers of X.

In [BGH], the following theorem was proved:

6.2 THEOREM (Theorem 1 in [BGH]): If $\mathcal{U} \in \mathcal{C}_X^o$, then there exists $\mu \in \mathcal{M}_T(X)$ such that $h_{\mu}(\mathcal{U}) \geq h_{top}(\mathcal{U})$.

In light of Theorem 6.1 we have that, for every $\mathcal{U} \in \mathcal{C}_X^o$, one can find a measure $\mu \in \mathcal{M}_T(X)$ such that $h_{\mu}(\mathcal{U}) = h_{top}(\mathcal{U})$. In fact, theorem 7 in [HMRY] now becomes

6.3 COROLLARY: For every $\mathcal{U} \in \mathcal{C}_X^o$, one can find a measure $\mu \in \mathcal{M}_T^e(X)$ such that $h_{\mu}(\mathcal{U}) = h_{top}(\mathcal{U})$.

Proof: Choose $\mu \in \mathcal{M}_T(X)$ such that $h_{\mu}(\mathcal{U}) = h_{top}(\mathcal{U})$, and let $\mu = \int \mu_x d\mu(x)$ be its ergodic decomposition. We know that

$$h_{top}(\mathcal{U}) = h_{\mu}(\mathcal{U}) = \int h_{\mu_x}(\mathcal{U}) d\mu(x)$$

and that $h_{\mu_x}(\mathcal{U}) \leq h_{top}(\mathcal{U})$. So we must have $h_{\mu_x}(\mathcal{U}) = h_{top}(\mathcal{U})$ for $[\mu]$ a.e. x.

We conclude from the above the classical variational principle: First we state a technical lemma, taken from [Ye].

- 6.4 LEMMA: For any $\epsilon > 0$, $\mu \in \mathcal{M}_T(X)$ and $\alpha = \{A_1, \ldots, A_M\} \in \mathcal{P}_X$, there exists an open cover $\mathcal{U} \in \mathcal{C}_X^o$ such that for every partition $\beta \succeq \mathcal{U}$ one has $H_{\mu}(\alpha|\beta) < \epsilon$.
- 6.5 Theorem (The Variational Principle):
 - (a) For every $\mu \in \mathcal{M}_T(X)$, $h_{\mu}(T) \leq h_{top}(T)$.
 - (b) $\sup_{\mu \in \mathcal{M}_T^e(X)} h_{\mu}(T) = h_{top}(T).$

Proof: To prove (a), we first show that for each $\mu \in \mathcal{M}_T(X)$, $h_{\mu}(T) = \sup_{\mathcal{U} \in \mathcal{C}_X^o} h_{\mu}(\mathcal{U}, T)$. If this is done, then from Theorem 6.1 we get

$$h_{\mu}(T) \leq \sup_{\mathcal{U} \in \mathcal{C}_{\mathbf{X}}^{o}} h_{top}(\mathcal{U}, T) = h_{top}(T).$$

It follows from the definition that for any cover \mathcal{U} of X, we have $h_{\mu}(\mathcal{U},T) \leq h_{\mu}(T)$, so one inequality is clear. For the other inequality, fix a partition $\alpha = \{A_1, \ldots, A_M\}$ of X and $\epsilon > 0$. We need to find an open cover \mathcal{U} of X such that $h_{\mu}(\alpha,T) \leq h_{\mu}(\mathcal{U},T) + \epsilon$. By the preceding lemma and from the fact that for any $\beta \in \mathcal{P}_X$ one has $h_{\mu}(\alpha) \leq h_{\mu}(\beta) + H(\alpha|\beta)$, we have $\mathcal{U} \in \mathcal{C}_X^o$ such that

$$h_{\mu}(\mathcal{U},T) = \inf_{\beta \succeq \mathcal{U}} h_{\mu}(\beta,T) \ge \inf_{\beta \succeq \mathcal{U}} (h_{\mu}(\alpha,T) - H_{\mu}(\alpha|\beta)) \ge h_{\mu}(\alpha,T) - \epsilon.$$

To prove (b), note that from (6.3) we know that for any $\mathcal{U} \in \mathcal{C}_X^o$ we can find $\mu \in \mathcal{M}_T^e(X)$ such that $h_{\mu}(\mathcal{U},T) = h_{top}(\mathcal{U},T)$. This gives us

$$\sup_{\mu \in \mathcal{M}_T^e(X)} h_{\mu}(T) \ge h_{top}(\mathcal{U}, T) \Rightarrow \sup_{\mu \in \mathcal{M}_T^e(X)} h_{\mu}(T) \ge \sup_{\mathcal{U} \in \mathcal{C}_X^o} h_{top}(\mathcal{U}, T) = h_{top}(T).$$

Together with (a), we get equality, which is (b).

References

- [BGH] F. Blanchard, E. Glasner and B. Host, A variation on the variational principle and applications to entropy pairs, Ergodic Theory and Dynamical Systems 17 (1997), 29–43.
- [GW] E. Glasner and B. Weiss, On the interplay between measurable and topological dynamics, Handbook of dynamical systems Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 597–648.
- [HMRY] W. Huang, A. Maass, P. P. Romagnoly and X. Ye, Entropy pairs and local Abramov formula for measure-theoretic entropy for a cover, Ergodic Theory and Dynamical Systems 24 (2004), 1127–1153.
- [R] P. P. Romagnoli, A local variational principle for the topological entropy, Ergodic Theory and Dynamical Systems 23 (2003), 1601–1610.
- [Ru] D. J. Rudolph, Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces, Oxford University Press, Clarendon Press, 1990.
- [Sh1] P. C. Shields, The Ergodic Theory of Discrete Sample Paths, Graduate Studies in Mathematics Vol. 13, American Mathematical Society, Providence, RI, 1996.
- [Sh2] P. C. Shields, The Theory of Bernoulli Shifts, Reprint of 1973 University of Chicago Press edition (available on the Web).
- [Ye] W. Huang, X. Ye and G. Zhang, A local variational principle for conditional entropy, Ergodic Theory and Dynamical Systems 26 (2006), 219–245.